

Publicada em 01 de dezembro de 2025.

Os camarões e outros crustáceos são animais invertebrados amplamente utilizados em várias atividades, incluindo a pesca comercial, a aquicultura, e a pesquisa científica. Aproximadamente 440 bilhões de camarões são produzidos em fazendas anualmente no mundo, o que representa mais de cinco vezes a produção total de todos os animais terrestres juntos¹. Além disso, ao considerar também a pesca, é estimado que entre 7,6 e 76 trilhões de camarões em geral sejam abatidos por ano². No entanto, os camarões muitas vezes não recebem a mesma consideração moral de animais vertebrados quanto à sua capacidade de sentir dor e experienciar sofrimento.

A senciência refere-se à capacidade de experimentar subjetivamente as emoções básicas, como dor, medo e desconforto, além de perceber e diferenciar estados internos como bons ou ruins³. Ou seja, é a habilidade de sentir, entender ou perceber algo por meio dos próprios sentidos⁴. Esse conceito é crucial para a ciência do bem-estar animal, pois implica que seres sencientes são capazes de experimentar sofrimento, o que justifica a necessidade de proteção e cuidados adequados. A senciência não é limitada aos vertebrados, também se aplica a vários invertebrados, incluindo crustáceos como os camarões.

Há uma diferença significativa entre a maneira como a população percebe a senciência dos camarões e o que é evidenciado pela ciência. Além de serem filogeneticamente distantes dos seres humanos, quando comparados a outros mamíferos, esses animais não produzem vocalizações nem exibem expressões faciais, que são características determinantes para a empatia humana. Mas, embora ainda existam lacunas científicas, evidências neuroanatômicas, farmacológicas e comportamentais desses animais são consistentes com a sua resposta à dor⁵.

Crustáceos possuem um sistema nervoso capaz de detectar e responder a estímulos potencialmente prejudiciais, como calor excessivo⁶ ou choques elétricos^{7,8}. Eles apresentam indicações comportamentais, anatômicas e fisiológicas de um sistema de dor sofisticado⁹. Demonstrações consistentes com a presença de receptores de dor^{6,8,10} e a evidência de respostas comportamentais complexas a estímulos nocivos, como o autocuidado ou 'esfregar' a região afetada, são exemplos disso^{8,11,12}. Além de estudos com camarões, outros crustáceos também já foram observados apresentando comportamentos e respostas semelhantes na presença de um estímulo nocivo^{13,14}.

Em outros experimentos, já foi verificado que comportamentos complexos alterados na presença de um estímulo doloroso podem ser reduzidos quando os animais são

anestesiados^{8,11}. Diversos estudos apontam outras mudanças comportamentais e fisiológicas de alguns crustáceos, até de longo prazo, quando expostos a estímulos danosos e dolorosos, tais como estresse, evitação por aprendizagem com a experiência, ou o descarte de um membro muito afetado (autotomia)^{15,16}.

A ciência também vem trazendo evidências de que esses animais exibem uma capacidade cognitiva complexa, envolvendo habilidades de discriminação de objetos e de cores, produção e percepção de sons, reconhecimento de outros indivíduos, aprendizagens complexas, memória, percepção espacial, comportamento baseado em decisões, cuidados com os filhotes, e até mesmo possíveis diferentes personalidades^{9,15,17}. Adicionalmente, é importante lembrar que, do ponto de vista evolutivo, a capacidade de sentir e responder a estímulos nocivos favorece a sobrevivência das espécies e, portanto, faz sentido que seja um atributo comum entre muitos grupos de animais, inclusive invertebrados.

Assim, o debate sobre a senciência desses animais é de extrema relevância para o desenvolvimento de políticas públicas e práticas éticas que promovam um manejo humanitário, minimizando o sofrimento desses seres durante as práticas de captura, produção, transporte e abate. Embora a Organização Mundial da Saúde Animal (OMSA) não forneça recomendações específicas voltadas para o bem-estar de crustáceos como os camarões, ela traz diretrizes que abordam aspectos relacionados à saúde e ao manejo de animais aquáticos em seu Código Sanitário para Animais Aquáticos¹⁸. Vale lembrar que diversas organizações ou entidades reguladoras ao redor do mundo, que já são bem estabelecidas - como a *Royal Society for the Prevention of Cruelty to Animals* (RSPCA), a *British Veterinary Association*, e a *Universities Federation for Animal Welfare* (UFAW) -, têm começado a considerar o bem-estar dos invertebrados aquáticos, incluindo os camarões¹⁶.

O tratamento adequado de crustáceos como os camarões não apenas melhora o seu bem-estar, mas também deve contribuir para a qualidade do produto final, com benefícios econômicos e éticos para os produtores e para a sociedade. Portanto, declaro estar de acordo com a afirmação de que crustáceos como os camarões são seres sencientes. Seu reconhecimento como tal implica o dever de agir para prevenir seu sofrimento evitável e promover a sua saúde e bem-estar. Esse reconhecimento é fundamental para conscientizar a sociedade civil e orientar as políticas científicas, legislativas e econômicas em relação ao manejo adequado desses animais.

"A questão não é 'eles podem raciocinar?' nem 'eles podem falar?' mas sim, 'eles podem sofrer?'" – Jeremy Bentham (1789).

Assinam a presente Declaração, na data de sua publicação, os(as) profissionais listados(as) a seguir, cujas funções e afiliações institucionais aqui indicadas correspondem àquelas exercidas na referida data.

- Ana Carolina dos Santos Gauy Bióloga e Pesquisadora na Unesp/Ibilce
- Ana Paula de Oliveira Souza
 Médica Veterinária e Especialista em Bem-Estar Animal na Alianima

3. Ana Silvia Pedrazzani

Médica Veterinária e CEO na Wai Ora

4. Anne Elise Landine Ferreira

Bióloga e Pesquisadora, Pós-doutoranda na UFJF

5. **Becca Franks**

Cientista de Bem-Estar Animal e Professora Assistente na New York University

6. Bruno Gonçalves

Professor na Secretaria do Estado de Educação de Goiás

7. Carla Forte Maiolino Molento

Médica Veterinária e Professora Titular na Universidade Federal do Paraná (UFPR)

8. Caroline Marques Maia

Bióloga, Especialista em Peixes na Alianima e Pesquisadora na fair-fish

9. Catalina Lopez

Médica Veterinária e Diretora da Aquatic Animal Alliance no Aquatic Life Institute

10. Daniel Santiago Rucinque

Médico Veterinário e Consultor Técnico na FWS Consultoria

11. Eliane Gonçalves de Freitas

Bióloga e Professora Sênior na Universidade Estadual Paulista (UNESP)

12. Fausta Borsani

Economista Agrônoma e Diretora Executiva na fair-fish International

13. Giovana Vieira

Médica Veterinária e Cientista em Bem-Estar Animal na The Humane League

14. Haven King-Nobles

Trabalhador de ONG e Diretor Executivo na Fish Welfare Initiative

15. Ida Bergendahl

Pesquisadora e Especialista em Análise Ambiental na Swedish University of Agricultural Sciences

16. Jenny Volstorf

Autora Científica e Diretora da fair-fish database

17. João Favero

Zootecnista e Assistente de Suporte Acadêmico na Universidade Estadual Paulista

18. Joao Saraiva

Biólogo

19. Julia Seibel

Publicitária e Diretora de Relações Corporativas no Aquatic Life Institute

20. Leonardo José Gil Barcellos

Médico Veterinário e Professor Titular III na Universidade de Passo Fundo

21. Lynne Sneddon

Professora na University of Gothenburg

22. Marisa Fernandes de Castilho

Professora Adjunta IV na Universidade Federal do Paraná (UFPR)

23. Maria Fernanda Martin Guimarães

Zootecnista e Gerente de Bem-Estar Animal na Alianima

24. Murilo Henrique Quintiliano

Zootecnista na FAI Farms

25. Paolo Panizzon

Pesquisador na fair-fish

26. Patricia Tatemoto

Bióloga e Pós-doutoranda na Universidade de São Paulo

27. Patrycia Sato

Médica Veterinária e Doutora em Bem-Estar de Animais de Produção, Presidente e Diretora Técnica da Alianima

28. Pedro Henrique Esteves Trindade

Professor Assistente na Michigan State University

29. Percilia Giaquinto

Docente e Diretora na UNESP

30. Rodrigo Egydio Barreto

Biólogo e Professor Associado na UNESP

31. Steffan Edward

Zootecnista e Especialista em Bem-Estar Animal/Certificação no Aquatic Life Institute

32. Tássia Oliveira Biazon

Bióloga e Professora no SESI

33. Tavani Rocha Camargo

Bióloga e Diretora de Pesquisa na SAMPLE Consultoria

34. Vinícius Nunes Alves

Biólogo, Mestre em Ecologia, e Professor de Ciências na Secretaria Municipal de Educação na Prefeitura de Botucatu

35. Yannick Rohrer

Gerente de Projetos em Bem-Estar de Peixes com Foco em Aplicação Prática na fair-fish

Referências

- 1. Shrimp Welfare Project [Internet]. Available from: https://www.shrimpwelfareproject.org/
- 2. Waldhorn DR, Autric E. Shrimp: The Animals Most Commonly Used and Killed for Food Production. San Francisco (CA): Rethink Priorities; 2023. Volume 37.
- 3. Volpato GL, Gonçalves-de-Freitas E, Fernandes-de-Castilho M. Insights into the concept of fish welfare. Dis Aquat Organ. 2007;75:165–71.
- 4. SENCIÊNCIA. In: Dicio, Dicionário Online de Português [Internet]. Porto: 7Graus; 2020 [cited 2025 Apr 14]. Available from: https://www.dicio.com.br/trabalho/
- 5. Rowe A. Should scientific research involving decapod crustaceans require ethical review? J Agric Environ Ethics. 2018;31:625–34.
- 6. Puri S, Faulkes Z. Can crayfish take the heat? Biol Open. 2015;4:441–8.
- 7. Elwood RW, Appel M. Pain experience in hermit crabs? Anim Behav. 2009;77:1243–6.
- 8. Birch J, Burn C, Schnell A, Browning H, Crump A. Review of the evidence of sentience in cephalopod molluscs and decapod crustaceans [Internet]. London: LSE Consulting, LSE Enterprise Ltd.; 2021 [cited 2025 Apr 14]. Available from: https://www.lse.ac.uk/News/News-Assets/PDFs/2021/Sentience-in-Cephalopod-Molluscs-and-Decapod-Crustaceans-Final-Report-November-2021.pdf
- 9. Broom D. Cognitive ability and sentience: Which aquatic animals should be protected? Dis Aquat Organ. 2007;75:99–108.
- 10. Kasiouras E, Hubbard PC, Gräns A, Sneddon LU. Putative nociceptive responses in a decapod crustacean: the shore crab (Carcinus maenas). Biology. 2024;13:851.
- 11. Barr S, Laming PR, Dick JT, Elwood RW. Nociception or pain in a decapod crustacean? Anim Behav. 2008;75:745–51.
- 12. Barr S, Elwood RW. The effects of caustic soda and benzocaine on directed grooming to the eyestalk in the glass prawn, Palaemon elegans, are consistent with the idea of pain in decapods. Animals. 2024;14:364.
- 13. Dyuizen IV, Kotsyuba EP, Lamash NE. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus. J Exp Biol. 2012;215:2668–76.
- 14. Barr S, Elwood RW. Effects of acetic acid and morphine in shore crabs, Carcinus maenas: implications for the possibility of pain in decapods. Animals. 2024;14:1705.
- 15. Gherardi F. Behavioural indicators of pain in crustacean decapods. Ann 1st Super Sanità. 2009;45(4):432–8.
- 16. Elwood RW. A history of pain studies and changing attitudes to the welfare of crustaceans. Animals. 2025;15:445.

- 17. Valente CS. Rethinking sentience: Invertebrates as worthy of moral consideration. J Agric Environ Ethics. 2024;38(3).
- 18. World Organisation for Animal Health (OIE). Aquatic Animal Health Code [Internet]. 26th ed. 2024 [cited 2025 Apr 14]. Available from: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/aquatic-code-online-access/